Math 434 Assignment 6

Due June 7

Assignments will be collected in class.

- 1. Prove that for each α , the Σ^0_{α} and Π^0_{α} sets are closed under continuous substitution. Conclude that the Borel sets are closed under continuous substitution.
- 2. Prove that if Λ is a pointclass closed under continuous substitution, then

$$\operatorname{Det}_{\omega}(\Lambda) \Longrightarrow \operatorname{Det}_{\omega}^{*}(\Lambda) \Longrightarrow \operatorname{Det}_{2}^{*}(\Lambda)$$

To prove $\operatorname{Det}_{\omega}(\Lambda) \Longrightarrow \operatorname{Det}_{\omega}^{*}(\Lambda)$, use the fact that there is a bijection between ω and $\omega^{<\omega}$. If this bijection is $f: \omega \to \omega^{<\omega}$, define

$$B = \{x \in \omega^{\omega} : f(x_0)^{\hat{}} x_1^{\hat{}} f(x_2)^{\hat{}} x_3^{\hat{}} \dots \in A\}.$$

Prove that B is in Λ and that the player that wins \mathcal{G}_B also wins \mathcal{G}_A^* .

- 3. Using the Axiom of Choice, show that:
 - (a) there is a set $A \subseteq \omega^{\omega}$ such that \mathcal{G}_A is determined but $G_{\omega^{\omega}-A}$ is not determined.
 - (b) there are sets $A, B \subseteq \omega^{\omega}$ such that \mathcal{G}_A and \mathcal{G}_B are determined, but $\mathcal{G}_{A \cup B}$ is not determined.
- 4. Show that the Axiom of Determinacy implies that there are no ultrafilters on ω .

Hint: Suppose that there was such an ultrafilter \mathcal{U} . Consider the game where players I and II together partition ω into two pieces. On their turn, a player chooses a finite subset of ω , disjoint from all of the subsets previously choosen, to add to their piece. Whichever player's piece ends up in \mathcal{U} is the winner.

Show that neither player can have a winning strategy. To do this, suppose that I has a winning strategy σ , and find two different ways for II to play against σ so that in one, II builds the piece A, and in the second, II builds the piece B, with $A \cup B$ containing all but finitely many elements of ω .

For the next questions, we will need the notion of a *club*, which is short for closed and unbounded. Let κ be a limit ordinal. A set $C \subseteq \kappa$ is a club on κ if it is unbounded in κ , and closed in the order topology. Being closed in the order topology means that if $\alpha < \kappa$, and $\sup(C \cap \alpha) = \alpha$, then $\alpha \in C$. That is, whenever a sequence in C has a limit that is less than κ , then that limit is in C. 5. Let κ be a regular cardinal. If C and D are clubs, then $C \cap D$ is a club.

Hint: It is not hard to show that $C \cap D$ is closed. First think about showing that $C \cap D$ is non-empty by considering a sequence $c_0 < d_0 < c_1 < d_1 < c_2 < \cdots$ with $c_i \in C$ and $d_i \in D$.

- 6. Let $A \subseteq \omega_1$. Define a game \mathcal{GC}_A played on the set $X = \omega_1$ as follows. Players I and II alternate playing ordinals $\xi < \omega_1$ to produce a sequence $\xi_0, \xi_1, \xi_2, \ldots$ with the requirement that $\xi_0 < \xi_1 < \xi_2 < \cdots$. The first player to violate this requirement loses. If both players follow this requirement, then I wins if and only if $\sup \xi_i \in A$.
 - (a) Show that I wins \mathcal{GC}_A if and only if A contains a club. Hint: The hard direction is to show that if I wins then A contains a club. First show that A is unbounded.

Any club in ω_1 would have to have order type ω_1 . Define by transfinite recursion an increasing sequence of elements $a_{\alpha} \in A$ for $\alpha < \omega_1$ so that $C = \{a_{\alpha} : \alpha < \omega_1\}$ is closed (hence a club).

At limit stages, let $a_{\alpha} = \sup_{\beta < \alpha} a_{\beta}$. At successor stages, define $a_{\alpha} \in A$ to be such that whenever there is a finite partial play of \mathcal{GC}_A where I follows σ and II plays only elements from $\{a_{\beta} : \beta < \alpha\}$, a_{α} is larger than any ordinal that appears.

You must explain why a_{α} exists for α a successor ordinal, and show that for α a limit ordinal, $a_{\alpha} \in A$. You must also argue that C is closed. It will naturally be unbounded since it has order type ω_1 .

A similar argument shows that II wins \mathcal{GC}_A if and only if A is disjoint from a club.

(b) Let \mathcal{U} be the set of all subsets of ω_1 that contain a club. This is called the club filter.

Assume that for every set $A \subseteq \omega_1$, \mathcal{GC}_A is determined. Show that \mathcal{U} is an ultrafilter.